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Abstract

Obtaining three-dimensional information from two-
dimensional visual data with no inherent depth component
is a fundamental problem of computer vision and has been
a challenge for decades. 3D reconstruction plays a crucial
role in vision and robotics tasks such as detection, navi-
gation and manipulation, and has thus become an increas-
ingly popular area of study in recent years. While most ex-
isting algorithms focus on reconstruction based on one or
more fixed input views, it is normal for an embodied agent
to move around and choose its observations of the object.
We therefore address the problem of intelligently choosing
views for optimal 3D reconstruction where an agent under-
stands which positions it would need to view a novel object
from in order to best understand its shape. We designed a
framework that achieves this in an iterative manner. At each
time step, it predicts the areas of high uncertainty in the cur-
rent reconstruction, then obtains a new observation from
this area and updates the reconstruction. We demonstrate
the effectiveness of our method on the watercraft class of the
ShapeNet dataset in two experiments. We hope our model
can quantitatively reason about the importance of differ-
ent views to reconstruction quality and inspire the design of
next-generation agent-aware benchmarks.

1. Introduction

3D shape reconstruction aims to infer the 3D geometry
and structure of objects from single or multiple images. It
has been a fundamental vision problem that finds its way
into many important applications such as object detection
and robot navigation. Although tremendous progress has

been made to tackle this problem, especially after the advent
of deep learning, performing 3D reconstruction in an active
manner still remains a difficult problem as it involves the
viewpoint planning on top of the reconstruction.

In this paper, we present a learning-based framework that
tackles the 3D multi-view reconstruction problem in a dy-
namic, explorative manner. Our approach is motivated by
the observation that humans tend to gravitate towards the
uncertain parts to learn the shape of an object. If we con-
sider an agent learning to reconstruct an object, we would
imagine it will benefit from collecting more images on re-
gions that require additional information. From this in-
tuition, we would like to train an agent to reconstruct a
3D model by making intelligent decisions on which views
of the object it needs. To plan a camera path to learn a
3D shape efficiently, the agent must learn which perspec-
tive/view of the target object is most necessary to increase
its confidence of its reconstructed object, which we denote
as the Next Best View (NBV).

This work can be divided into two primary components:
multi-view 3D reconstruction and NBV prediction. For the
multi-view 3D reconstruction part, our work is motivated
by three recent papers: Mesh R-CNN[4], Pix2Vox[13] and
Pixel2Mesh++[12]. Mesh R-CNN[4] can do mesh recon-
struction from one single image. Pix2Vox[13] can do voxel
reconstruction from one or more images. For this work we
use those existing works unchanged and limit our experi-
ments in optimizing our next best view module.

Regarding the prediction of the Next Best View, our
work is motivated by two most similar works to this prob-
lem, by Ramakrishnan et al. [8] and Seifi et al [10]. [8] uses
reinforcement learning to decide which viewpoints are most
informative for 3D scene and object reconstruction tasks.
[10] learns which viewpoint in a 360◦ image is most infor-
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Figure 1: We start with a 3D reconstructed mesh from a ran-
domly sampled image viewpoint of the object. We then ren-
der a viewgrid of the predicted mesh from a predetermined
set of viewpoints for the model. We generate our actual
probability map from the reconstruction loss between the
predicted view grid and a corresponding ground-truth view-
grid. The viewpoint with the highest loss is taken as the
Next Best View and becomes the viewpoint sampled next
in the reconstruction. Our NBV prediction module is su-
pervised using the actual probability map, and the predicted
probability map is utilized during evaluation.

mative or useful for whole scene reconstruction. We dif-
fer by targeting 3D object reconstruction without reinforce-
ment learning, constrained by a static set of viewpoints.
Within this project, we focus on demonstrating the bene-
fits of incorporating the NBV into a multi-view reconstruc-
tion pipeline, compared against any other randomly selected
viewpoint.

The contributions of this paper can be summarized as
follows:

• We present an active vision learning framework for 3D
object reconstruction, which has the potential to jointly
learn the 3D shape and the navigation strategy.

• We adapt the viewgrid technique used in [8] to calcu-
late the silhouette loss. Instead of using natural images
with RGB channels, we use their silhouette renderings
to put the emphasis on the object outline.

• We implement a supervised learning strategy for Next
Best View prediction. Experimental results show that
our proposed model shows improvement on IoU scores
as compared to a random selection strategy.

2. Related Works
2.1. 3D Reconstruction

A large amount of literature has been produced over
the decades in the field of image-based 3D reconstruction.
Traditional methods like Structure from Motion (SfM) suf-
fers from the prohibiting feature matching procedure and
fails with insufficient views. Remarkable improvement of
reconstruction quality upon those traditional methods has
been achieved by deep learning-based approaches. How-
ever, most of the state-of-the-art approaches are built upon
one or a fixed set of input images and leave no freedom for
the algorithm to choose viewpoints.

3D-R2N2, proposed by Choy et al. in [2], generates
voxel reconstructions from multiple images using a novel
3D convolutional LSTM layer coupled with an encoder-
decoder framework. The Learnt Stereo Machine (LSM)
proposed in [6] encodes images with known camera poses
to 2D features maps and then unprojects them to 3D for end-
to-end learning. Another work, Pix2Vox, attempts to over-
come the limitations of RNN-based methods like 3D-R2N2
and LSM by using an autoencoder structure to produce both
single- and multi-view reconstructions, the latter achieved
by generating (sans-RNN) coarse voxel reconstructions for
each viewpoint and fusing them together [13].

Pixel2Mesh [11] comes up with an approach to recon-
struct 3D meshes from a single image. It gradually deforms
an ellipse surface into the final model, which has the draw-
back of performing poorly when dealing with objects with
holes. This work is followed by Pixel2Mesh++ [12], where
the authors introduce a MultiView Deformation Network to
pool perceptual features from multiple views. Gkioxari et
al. [4] propose Mesh R-CNN, which extends upon their
Mask-RCNN [5] pipeline. They introduce a voxel branch
that takes a single image and produces voxel reconstruc-
tions, which are converted into a mesh (“cubified”) and then
refined with a mesh branch to achieve finer details. Our
model uses Mesh-RCNN framework as the main structure
and replaces the voxel branch with Pix2Vox to be able to
take arbitrary images for continuous reconstruction.

2.2. Next Best View

Active vision has been a popular area in the computer vi-
sion community. Jayaraman et al. [3] introduce the concept
of a viewgrid to embed 3D shape information into a single-
view image representation. They use a ShapeCode feature
extractor to embed viewpoints into a ShapeCode represen-
tation. This representation is then used to produce the view-
grid which generates a 2D image of the object from multiple
viewpoints. We use this concept to help us choose the NBV.

Seifi et al. [10] addresses the problem of active visual
exploration of a large 360◦ input. It uses an attention mod-
ule to decide the next location to attend. Ramakrishnan et



al. [8] proposes a reinforcement learning to let an agent
learn efficient exploratory behaviors to acquire informative
visual observations. Mendoza et al. [7] uses a 3D-CNN to
directly predict the NBV based on supervised deep learn-
ing. Our method is also based on supervised learning, but
instead of predicting the NBV directly from 3D reconstruc-
tion, we predict it from a viewgrid.

3. Method

Our model consists of two primary parts: a multi-view
3D reconstruction module and a next-best-view prediction
module. During the training phase, the 3D reconstruction
module takes an image from a random viewpoint and re-
constructs a 3D mesh. The NBV prediction module gener-
ates the viewgrid for the predicted mesh at the same view-
points as ground-truth renderings, and then creates an actual
probability map which is the normalized reconstruction loss
between the rendering pairs. The viewpoint with the high-
est loss is the one with the highest uncertainty, and should
be considered as the Next Best View used in the next re-
construction. During evaluation, the prediction module will
determine which of the viewpoints is needed for the next re-
construction update. An overview of this pipeline is shown
in Fig. 1. The following subsections discuss each major
step in detail.

3.1. Multi-View 3D Reconstruction

Once we randomly select an initial viewpoint of an ob-
ject and sample the image corresponding to that view, we
use Pix2Vox to generate a 3D voxel of the object. Pix2Vox
can reconstruct 3D models from one or multiple images.
Chosen for its (relative) simplicity and lack of RNNs, it per-
forms reconstruction by generating multiple single-view re-
constructions which are fused together into a single voxel
grid, which becomes the output and is converted into a
mesh. Once the prediction module analyzes the viewgrid
and selects the NBV, we use both the original image as well
as the one corresponding to the NBV as inputs to Pix2Vox.
This cycle can theoretically continue up through allN = 24
views, though we only selected a Next Best View once in
this project.

3.2. Viewgrid Generation

We use viewgrids as the format for computing the recon-
struction loss as well as evaluating the information gained
from incorporating each subsequent view. Once we’ve re-
ceived the reconstructed voxel from Pix2Vox and convert
it into mesh, we use PyTorch3D [9] to create silhouette
renderings of the mesh from a fixed set of viewpoints and
form a viewgrid. We make use of 3D-R2N2-generated pre-
processed renderings of the objects as our set of fixed view-
points, which provides 24 views for per object. Using a

(a)

(b)

Figure 2: (a) Viewgrid using 3D-R2N2 provided render-
ings. (b) Viewgrid of silhouette renderings from mesh out-
put, aligned to RGB images shown in (a).

fixed set of viewpoints ensures the locations in both view-
grids are the same. The viewgrids are essential to the NBV
prediction module. Mean-squared error (MSE) is used as
our reconstruction loss between the ground-truth viewgrid
and the generated (predicted) viewgrid, as we will discuss
in the next subsection.

3.3. Next View Prediction

Given the predicted and ground-truth viewgrids, we
compute their reconstruction loss in Eq. 1 between each sil-
houette rendering of the predicted mesh, Spred

i , and ground-
truth mesh, Strue

i , where i ∈ {0, 1, 2, · · · , 23}. This error
grid, after being normalized by the maximum value for the
sake of stability, will be passed to a soft-max operation in



Eq. 2 and becomes our ground-truth probability map, P̃ .
The higher the loss of a viewpoint, the more information the
agent is missing from that viewpoint, and hence the more
benefit the agent is going to get if it takes a peek from that
view. Thus P̃ represents our belief how possible each view-
point will be the next-best-view.

Pi =
(Spred

i − Sgt
i )2

maxj(S
pred
j − Sgt

j )2
(1)

P̃i =
expPi∑
j expPj

(2)

Given the ground-truth silhouette renderings, we could
simply treat the viewpoint with the highest loss in the view-
grid as the area with the highest uncertainty, and select that
as our NBV, denoted as Vi∗ , where i∗(θ) = argmax P̃i(θ),
and θ is the parameters for the prediction module. However,
during evaluation there’s no such ground-truth available. In-
stead, we train a prediction module that learns to predict the
ground-truth probability map. The prediction module ar-
chitecture is ResNet-18 with a fully-connected layer added
at the end, with weights initialized to ImageNet pre-trained
weights. Taking a viewgrid as input, the prediction mod-
ule outputs a predicted probability map, of which the area
with the highest loss is selected as our next viewpoint. Dur-
ing training, we desire that the prediction module output a
similar distribution as the ground truth probability map. We
use a mean-squared error loss (Eq. 3) to train the predic-
tion module from the normalized silhouette losses. But one
could conceivably also use cross-entropy loss to treat this
as a classification problem. In our experiments we found
the silhouette losses had limited variability, so we settled on
MSE.

L(θ) =
1

N

∑
n

(P̂n(θ)− P̃n)
2 (3)

4. Experiments
In order to best evaluate our model and the benefit of

Next Best View , we conduct two main experiments. The
first is an evaluation test of our prediction module, where we
measure the accuracy of the module in selecting the Next
Best View. The second experiment tracks the intersection
over union (IoU) metric and aims to show that implement-
ing the Next Best View at each time step provides maximum
information gain.

4.1. Dataset

All experiments are performed on the ShapeNet dataset
[1], specifically ShapeNetCoreV1. This is a subset of the
full ShapeNet dataset which covers 55 common object cate-
gories with about 51,300 unique 3D models. From these 55

categories, we wanted to focus on just the 13 major classes,
which still covers about 44,000 models. Unfortunately, do
to uncommonly long training times, we decided to train and
evaluate both experiments on just one class: the watercraft,
comprised of 1,939 models. We decided to focus on this
class in particular both because of its large intra-class vari-
ation as well as its relatively high saliency.

4.2. Implementation Details

All of the RGB images in both training and validation
split are of size 137 × 137. As previously mentioned, we
use the RGB renderings provided by 3D-R2N2 as our fixed
viewpoints. We store the extrinsic matrix parameters for
each viewpoint so we can later align the silhouette of the
predicted mesh with the RGB renderings. As previously
mentioned, our NBV prediction module uses a ResNet-
18 backbone initialized with ImageNet pre-trained weights.
The input to the prediction module is a stack of silhouette
renderings of shape N × H × W . N = 24 images and
the rendered silhouette dimensions are H = W = 256.
Pix2Vox supplies a voxelized output, and to use this in
our pipeline we use the cubify function supplied by Py-
Torch3D. This converts the output voxel into a Mesh object.

4.3. Accuracy of NBV Selection

For the first experiment, the prediction module’s task is
to select the Next Best View out of 24 possible options.
Consequently, a natural baseline is random selection, which
uniformly selects a random view with probability 4.17%.

Due to time constraints, we trained and evaluated our
NBV prediction module on just the watercraft class. We
generated a mesh from a single image with the trained Mesh
R-CNN model. For both the predicted mesh and the ground-
truth mesh, we generated a viewgrid of 24 silhouetted im-
ages from PyTorch3D. In order to align the two viewgrids
for comparison and to input the second rendered image,
we retrieved and used as necessary the rotation and trans-
lation matrices from the 3D-R2N2 rendering metadata. We
used PyTorch’s built-in MSE loss (Eq. 3) to train our model,
which evaluated the difference between the predicted prob-
ability map and the actual probability map.

4.4. Average Intersection over Union (IoU)

The second experiment is to calculate the average IoU of
the voxelized reconstruction of the original viewpoint im-
age and the Next Best View image. Thus, there are two
simple baselines to make comparisons with. Our first base-
line is to report the IoU of the single-view reconstruction
from only the original viewpoint. The second baseline is to
report the IoU of the multi-view reconstruction of the orig-
inal viewpoint along with a randomly selected viewpoint.
If the predicted Next Best View is truly the “best” view, it
should result in an IoU greater than either of these baselines.



Prediction module Training Accuracy Validation Accuracy Random Chance (N=24 views)
ResNet18 + FC + Softmax 39.689% 39.448% 4.17%
ResNet18 + FC 39.848% 37.771% 4.17%

Table 1: Prediction module performance on the watercraft class

Threshold Single view One + random One + NBV
0.2 0.6521 0.6847 0.6861
0.3 0.6728 0.7047 0.7086
0.4 0.6851 0.7157 0.7210
0.5 0.6955 0.7288 0.7323

Table 2: IoU scores of voxel reconstruction with different threshold

(a) Input view (b) Ground-truth NBV (c) Predicted NBV

Figure 3: We provide three qualitative examples from our
prediction module. Each row represents a different model
from the watercraft class. The first column is the input view,
the second column is the ground-truth next-best view i.e.
view with the highest calculated loss, and the final column
is the predicted next-best view.

4.5. Evaluation

4.5.1 Accuracy of NBV Selection

We treat the viewpoint with the highest value in the proba-
bility map as the Next Best View. The accuracy of NBV se-
lection is calculated as the total correct predictions divided
by the total predictions. As shown in Table 1, selecting the
NBV by chance is around 4%, but our prediction module

can correctly predict the NBV with about 40% accuracy.
Our results state that the prediction module we trained is
about 9.5 times better than random chance.

We provide qualitative examples in Fig. 3. Each row
is a different model from the watercraft class. In the first
row, our prediction module selects the same next view as the
GT next best view. While the second and third rows select
different views. If the RGB renderings provided consistent
discrete viewpoints across all models, we could make more
definitive statements. But intuitively it would seem that the
next best view is either 90 or 180 degree rotation from the
input view.

4.5.2 Average Intersection over Union (IoU)

To further see how the selected NBV improves the recon-
struction quality, we calculated the average IoU of 100 ran-
domly selected instances in the watercraft class. In this test,
we go through the entire process of receiving the voxel out-
put from Pix2Vox, converting it to a mesh, generating a
viewgrid, and selecting the Next Best View. As usual, the
NBV then becomes an additional input into Pix2Vox, which
generates an updated reconstruction. But this time, we keep
it in voxel format and calculate its IoU against the ground-
truth voxel grid. We also computed its IoU with a voxel
grid that used the original image and one randomly selected
viewpoint as the NBV.

From Table 2 we can see that the voxel reconstruction us-
ing the original viewpoint and the NBV have the highest av-
erage IoU, meaning the predicted NBV provides greater ad-
ditional information for 3D reconstruction than a randomly
selected view.

5. Conclusion

We addressed the problem of 3D reconstruction through
actively-chosen input views. We presented a learning-based



framework which incorporates a multi-view 3D reconstruc-
tion module and a next-best-view prediction module. We
sampled a viewgrid of 24 discrete viewpoints per object for
the agent to choose from and employed a supervised learn-
ing approach to predict the next best view. Qualitative and
quantitative experiments showed that the proposed model
outperforms the baseline methods and is able to dynami-
cally choose observations and iteratively perform 3D recon-
struction on novel objects.

6. Future Work
• Jointly training the entire model: at the current stage,

we utilize a pre-trained Pix2Vox model for multi-view
3D reconstruction and focus on training the prediction
module, but future work could incorporate the joint
training of the two modules, allowing them to benefit
from each other.

• Fixed viewgrid: although the views provided by 3D-
R2N2 suffice as a set of fixed viewpoints, it would be
interesting to expand our viewpoint selection and be
able to render the object using a fixed discretized view-
grid on a sphere.

• Experiment with other multi-view reconstruction mod-
els: Pix2Vox is doing a satisfactory job for multi-view
voxel reconstruction, but it would be interesting to in-
tegrate it into the state-of-the-art Mesh R-CNN frame-
work so that we can do multi-view mesh reconstruc-
tion.

• A better way to evaluate the information gain with each
extra input view: IoU, Chamfer Distance and F1 scores
could be used to evaluate the reconstruction quality.
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