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Abstract
Visual object tracking is an extensively researched area,

but it remains an open problem due to many challenges re-
sulting in tracking failures. The vast majority of state-of-
the-art object trackers rely on deep neural networks and
their many class-invariant features to find correspondences
between consecutive frames. However, many of these track-
ers lack the ability to adapt in real-time to respond to tem-
poral cues in videos. This failure to update the tracker’s
parameters results in losing the target as its movements
and appearance varies. Recently there has also been work
in estimating portions of the Kalman Filter framework us-
ing deep learning modules, as shown by Backprop-KF and
LSTM-KF. We propose a deep learning tracking framework
that uses state estimation theory to produce robust predic-
tions in visual object tracking. We use a Siamese CNN to
encode our observations and we follow LSTM-KF in using
recurrent neural networks to produce a motion model and
covariance estimates for the Kalman Filter update. We re-
port our results on the ImageNet Video Object Detection
dataset and compare to additional baselines.

1. Introduction
Visual object tracking is a classic problem with end-

less applications that can be employed in a variety of ar-
eas such as robotics, computer vision, the medical field, or
video graphics. There has been extensive research with a
wide-range of solutions aimed at solving these problems,
from hand-crafted feature detectors to deep learning mod-
ules [3, 5, 12, 32, 35]. However there still exist significant
challenges in visual object tracking. Some of the common
failures include occlusion, change in appearance, illumina-
tion variance, and fast or blurred motion [30]. We also be-
lieve that an additional cause of failure is a lack of motion
models in many modern trackers. For single target object
tracking, we track an unknown object throughout a video
sequence conditioned only on its initial position and ap-

Figure 1: A high level overview of our complete tracking
framework. The observations are video frames, the encod-
ing module used is a Convolutional Neural Network (CNN),
and we use a recurrent network architecture to perform our
motion modeling. We output the target position for each
video frame.

pearance. In contrast, the multi-object tracking problem
typically uses an object detector to find all known objects
at each frame. The primary challenge becomes identity
switching, re-identification, and missed detections. In our
work we study single target object tracking, for the specific
purpose of leveraging temporal cues in videos to improve
tracking performance.

While temporal cues can be any information that exists
across time in video, we focus on past positions of the ob-
ject. We want to use the changes in position to model the
object’s motion, leveraging this to provide more accurate
predictions of the target’s location. To that end, we look
towards work in state estimation theory, particularly Recur-
sive Bayesian filters [31]. Recursive Bayesian filters are
used to estimate a probability distribution given a state tran-
sition model, incoming measurements and observations. In
our specific case, the learned motion model is the state tran-
sition model while incoming observations are used to pro-
duce estimated positions of the target. So in essence, we are
filtering our position estimates to follow closely our learned
motion model with the expectation of an improved localiza-
tion accuracy. A high level overview for the concept of this
framework is shown in Fig. 1.

Recent work by Coskun et al. [6] provides a deep net-
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work architecture for learning the different modules in
a Kalman Filter named the Long-Short Term Memory
Kalman Filter (LSTM-KF). We follow a similar structure
in our training regime with changes to the intermediate
Kalman update calculations, the LSTM networks used, and
the loss function formulation. Our model uses a Siamese
network that regresses an object’s target coordinates, whose
output is filtered by an LSTM architecture that performs a
Kalman update. In this work we propose a way to learn
a motion model for a visual tracking framework, by first
viewing the object’s coordinate position as its state and us-
ing our model to predict the next state conditioned only on
the current state and internal recurrent parameters. Our goal
is to produce increasingly robust predictions using these
state changes as temporal cues.

2. Related Works
Visual tracking has a dense history, evolving from

low-level feature matching to high-level data-driven meth-
ods. Traditional methods primarily represent objects using
points [2, 4], kernels [3, 5, 8, 13, 25, 32], or silhouettes [35].
Additionally, tracking schemes generally fall into genera-
tive or discriminative methods. Generative tracking tech-
niques first defines the target appearance and then searches
for candidate regions that best fit the appearance model
[27]. Discriminative tracking learns to distinguish the tar-
get object from background regions. Discriminative ap-
proaches often include learning using both positive (target)
and negative (non-target) regions of an image. They have
empirically been shown to perform superior to generative
methods and are utilized by many state-of-the-art tracking
methods [1, 8, 13, 17, 27].

Classical trackers

The Kanade-Lucas-Tomasi (KLT) tracker [32] is a classic
technique that performs tracking by solving the image reg-
istration problem. The KLT tracker assumes only a trans-
lation transformation between consecutive frames. Conse-
quently, it does not handle occlusion or affine and homo-
graphic transformations. The Mean-shift Tracker [5] repre-
sents an ellipsoid region with a histogram of its RGB val-
ues, and it iteratively finds the next region with the most
similarity. Bolme et al. [3] proposed an adaptive corre-
lation filter-based tracker, MOSSE, that operates at real-
time speeds and provides robustness to variations in light-
ing, scale, and pose. For each additional incoming frame,
the filter is updated while down-weighting the effect of the
previous frames. Kernelized Correlation Filters (KCF) [13]
and many others [7, 26] build upon these results in corre-
lation filter tracking. KCF particularly produces a kernel-
ized version of the correlation filter by first viewing it as
a ridge regression problem. Tracking-Learning-Detection

(TLD) [17] is composed from a three-part tracking by de-
tection method that additionally uses both positive and neg-
ative samples to continuously improve their detector. These
classical trackers inherently learn online which is useful
for adapting to novel videos, but they do not take advan-
tage of the vast amount of offline video and image data.
Hence, deep learning models have emerged to the forefront
for tracking tasks primarily because of their ability to gen-
eralize to new data.

Deep Learning based trackers

MDNet [27] uses a small discriminative CNN to perform
generic object tracking. While MDNet outperforms classi-
cal techniques (in terms of accuracy), its use of online fine-
tuning limits the runtime to around 1 fps. GoTurn [12] is a
Siamese network, based on the AlexNet architecture [21],
that regresses to a set of bounding box coordinates for the
target object. A Siamese network is an artificial neural
network that operates on two inputs using the same set of
shared weights. GoTurn does not perform well with certain
occlusions and it does not learn from novel video sequences
because the network weights are frozen. We use GoTurn
as a baseline and its architecture for our Siamese model.
Our aim is to include an LSTM-based motion model so our
tracking framework can efficiently adapt to certain evolving
target characteristics during evaluation. Other siamese net-
works [1,23,24,33,36] apply a cross-correlation layer after
its convolutions instead of regressing directly to bounding
box coordinates.

The majority of modern object trackers, rely purely
on appearance to localize the target object in subsequent
frames, and none provide motion models for the objects
being tracked. There are a few works however, that have
looked at capturing some temporal information through
the use of Long Short Term Memory Networks (LSTMs)
[10, 18] and Memory Networks [34]. However, in contrast
to these methods, we propose to use the LSTMs to model
different parts of a Kalman Filter to solve the tracking prob-
lem.

State estimation models

Traditionally, state estimation methods (Kalman Filtering,
Extended Kalman Filtering, etc) are constructed with an ex-
plicit state transition and measurement model. There has
been recent work in estimating different portions of the state
estimation framework using deep learning. Deep Kalman
Filtering [20] learns to model sequences of synthetic data in
the presence of non-linear control inputs. Backprop KF [11]
uses a CNN to process frame observations into states and
estimates the measurement covariance. This was used for
synthetic tracking experiments under linear Gaussian as-
sumptions, which is not reasonable for highly non-linear
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Figure 2: A detailed overview of our tracking framework. Two frames at ft−1 and ft are passed through a shared set of
convolutional layers, with ft−1 centered on last predicted position (or ground truth). Both outputs are concantenated and
passed through a set of fully-connected layers to produce our observation zt, a measure for the target position on ft. zt along
with x̂t−1 (or xt−1) are input to the LSTM-KF unit to produce x̂t, the corrected prediction on ft.

real world video data. Objects in video sequences may un-
dergo changes in acceleration, occlusion, out-of-plane rota-
tions, etc. Both [20] and [11] operate under linear state tran-
sition assumptions and assume fixed state transition model
or fixed state covariance. But Coskun et al. [6] produce
LSTM-KF to attempt to learn the state transition models
and covariances using LSTMs. In [6], they use LSTM mod-
ules to estimate the state transition model, state transition
covariance, and measurement covariance for one-shot pose
estimation in videos. The claim here is that the LSTMs
will learn the relationship between states across time steps
and produce a viable state model and covariance estimates
across different time steps. In all of these cases, the esti-
mates and models are input into the standard Kalman up-
date equations. Our method is most similar to [6], where
we aim to estimate several building blocks of the Kalman
filter update equations purely from training data.

3. Background

A complete overview of State Estimation and Recurrent
Neural Networks are included in Appendices A and B. We
define our notation below.

Notation Overview

xt → Ground truth state Pt → State covariance

xt → Belief prediction Pt → Belief covariance
zt → Observation Rt → Observation covariance

x̂t → Corrected prediction P̂t → Corrected covariance

Algorithm 1 Overview of method

input V = [f0, f1, ..., fT ] {Input Video}
X = [x0,x1,x2, ...,xT ] {Ground truth boxes}
initialize P0 ∼ N (0, I), X̂ = {}
for t = 1 to T do
zt = CNN(ft−1, ft)
xt = LSTMf (xt−1)
Qt = LSTMQ(xt)
Rt = LSTMR(zt)
x̂t, P̂t = kalman update(xt, Pt−1, zt, Qt, Rt)
X̂.append(x̂t)
Pt ← P̂t
if curriculum learning then

xt ← x̂t with p = 0.5
end if

end for
return X̂ {Final Predictions}

4. Method Overview

Our method takes inspiration from state estimation the-
ory, filtering noisy outputs through a learned state transition
model in order to provide robust behavior. An overview of
our framework is shown in Algorithm 1. We have as input
a video V of length T and its corresponding ground truth
bounding boxes X . The output is X̂ , T − 1 position predic-
tions, but our framework can also produce the covariance
of the state prediction, P̂t at each time step. As standard
in single-target object tracking, x̂0 ∈ R4 is initialized us-
ing the ground truth coordinate on the first frame, addition-
ally we initialize P̂0 ∈ R4×4 as an identity matrix. Our
4-dimensional coordinate space for xt is the top-left and
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bottom-right coordinates of the bounding box.
We use a Siamese network, shown in Fig. 2, as our ob-

servation model. Like GoTurn [12], it regresses to a set
of bounding box coordinates given a pair of consecutive
frames as input. For each pair of input frames ft−1 and
ft we output an observation vector zt ∈ R4. In a trained
tracking network zt would be the final output prediction,
but we treat this as our observation variable.

We use the LSTM-KF unit, shown in Fig 3, from [6] to
perform many of the Kalman filter functions described in
Appendix A. The inputs to the LSTM-KF are zt, x̂t−1, and
P̂t−1 and the outputs are x̂t and P̂t. LSTMf is designed to
perform as a state transition function. It produces the state
belief prediction, xt, at time t from the prior tracker pre-
diction x̂t−1. LSTMQ produces the state transition noise,
Qt, using xt as input. LSTMR produces the observation
covariance, Rt, from zt. To provide covariance matrices
that are positive-semidefinite, [6] simply produced diago-
nal matrices from LSTMQ and LSTMR. But this assumes
zero correlation between the elements of the state xt. This
is a bad assumption, because in our problem the bounding
boxes coordinates are highly-correlated and do not operate
independently. The Cholesky decomposition states that any
Hermitian positive-semi definite matrix can be decomposed
into a matrix outer-product of a lower triangular matrix,
A = LLT , and the converse holds true for an invertible
lower triangular matrix L [14]. So instead we first reshape
our output into a lower triangular matrix and then multi-
ply it with its transpose to produce the covariance matrices.
In Appendix A, we see that because the state transition is
modeled using a non-linear function we require the Jaco-
bian to update our covariance estimates. [6] uses a linear
layer from the output of LSTMQ to produce this Jacobian
matrix Gt, but this is not guaranteed to be optimal or cor-
rect because it is not the true gradient of the state transition
LSTMf . Instead, we numerically calculate Ft as ∂f

∂x̂t−1
us-

ing the LSTM outputs at each iteration. Finally, all of these
components are used as inputs into the standard Kalman up-
date equations and produce x̂t and P̂t.

We experimented with both the L1 and L2 loss, but
we found that models trained with the L1 loss provided a
higher validation accuracy. We compute the loss between
the ground truth xt and the model prediction x̂t:

L(θ) =
1

T

T∑
t=1

‖xt − x̂t(θ)‖1 (1)

Like [6] we also experimented with adding the error be-
tween the belief prediction, xt, and the ground truth, xt, as
a regularizer.

Lprediction(θ) = λ1‖xt − xt(θ)‖1 (2)

Through some hyper-parameter tuning, we empirically set
λ1 = 1. We do not have any ground truth data for the covari-

Figure 3: An inner block diagram of the LSTM-KF unit

ance matrix P̂t, so we experimented with adding the Frobe-
nius norm to encourage a lower covariance output. Our total
loss now becomes:

Ltotal(θ) = L(θ) + Lprediction(θ) + λ2‖P̂t‖F (3)

with λ2 = 0.01.

4.1. Training Procedure

Unlike standard Siamese tracking methods, we train on
video sequences rather than standalone image frame pairs.
This means that we only update the model parameters after
making predictions for the entire video sequence. During
training, we sample video sequence lengths of 4, 8, and 16
frames. The loss in Equation 3 is computed after making a
prediction for all frames T − 1 frames in the sequence. We
found that due to the high frame rate of the video sequences,
many consecutive frames contain nearly identical content
with very little movement. Instead of using all consecutive
frames, for each video sequence we uniformly random sam-
ple an offset ∆t between each frame, where ∆t ∈ [2, 32].
For some experiments we produced our belief prediction xt
from the ground truth xt−1. But we found this resulted
in significant drift when evaluating the tracker on videos
with longer sequences. The network was trained to output
xt from ground truth data only, but not its own previous
predictions which may contain some uncertainty. Instead
we implement a variant of curriculum learning, similar to
a method performed by [10]. During training, at each time
step t we randomly select x̂t−1 (p = 0.5), instead of xt−1,
to produce our belief prediction xt. While during valida-
tion, to closely model testing, we only use x̂t−1 to compute
the belief prediction. Table 2 shows the effects of using cur-
riculum learning when evaluate on longer sequences, that
what was previously trained. We also added gradient clip-
ping to prevent the gradients from exploding when back-
propagating through the LSTM units.
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5. Experiments
5.1. Dataset(s)

Training and Validation

ILSVRC-VID The ImageNet Large Scale Visual Recogni-
tion Competition [29] provides an object detection for video
dataset in addition to their image classification dataset.
There are 30 object classes and all objects are annotated
at every frame. From this dataset we use 26, 400 train-
ing video clips and 1, 151 validation video clips. Each clip
tracks a single object, while several clips may be extracted
from the same video.

5.2. Models

We trained with different models to compare against
GoTurn [12] and LSTM-KF [6] as baselines. We denote
LSTM-KF2 and LSTM-KF3 as our modifications to the
LSTM-KF architecture. And finally we add a CNN+LSTM
model for comparison. Similar to work done by [10], we
will use a standard LSTM to recurrently update a hidden
representation for the state. The details for each model are
described below.

GoTurn1 follows the same training regime as in [12].
Here the model trains on a single frame and an augmented
version of that frame. Consequently, this trains on more
data. The data augmentation is performed by applying a
simulated motion and scale change to the original frame.
This data augmentation, however, is a huge determining
factor to the model’s performance. The parameters for
the motion and scale transformations were approximated
from ALOV300++ [30], an existing visual tracking dataset,
which may not generalize well to other videos. The model
weights are updated for every pair of inputs, and we use the
L1 loss between the model prediction and ground truth.

GoTurn2 is trained with our training regime, and is di-
rectly comparable with the remaining models in terms of
training data. Here we input pairs of consecutive frames,
with some offset, from a video sequence into the model and
only update the weights after producing predictions for the
entire sequence. Again the loss is the L1 loss between the
model predictions and the ground truths.

LSTM-KF1 is implemented using the same details from
the original paper [6]. The LSTMs used all have the same
number of hidden units. Here we use Equation 3 as the loss
function.

LSTM-KF2 is our first modification to the LSTM-KF’s
formulations. Instead of a strictly diagonal covariance ma-
trix output, we generate the covariance matrices using the
Cholesky decomposition. We also compute the numerical
Jacobian for LSTMf as Ft from the LSTM cell gates and

1This model uses a different data loading strategy, hence it trains on
more data.

outputs at each time step. In optimization problems the Ja-
cobian matrix is often never computed directly because it
may be too large to store into memory. But given our small
state size, xt ∈ R4, we are able to calculate it without run-
ning into memory issues. Again the loss function is calcu-
lated from Equation 3.

LSTM-KF3 is our second modification to LSTM-KF. In
this variant, we make no attempt to approximate the Jaco-
bian of LSTMf . Ft is only used to update the belief covari-
ance Pt, so instead we choose to approximate it using Pt−1
and xt as input into a another non-linear function fP .

Pt = fP (Pt−1,xt) (4)

We use an LSTM unit for fP and the loss is also Equation
3.

CNN + LSTM This solution makes no assumption about
the form of our state representation. Instead, we use the
Siamese network to output a vector which serves as input
directly to an LSTM. The output vector is the same dimen-
sion of the hidden states as the LSTMs. The LSTM outputs
the bounding box coordinates, while updating the state rep-
resentation using only its recurrent parameters. This model
also uses the loss from Equation 3.

5.3. Implementation Details

All models were built and trained in PyTorch [28] and
executed on TitanX or GeForce GTX 1080i GPUs. During
training our convolutional layers are initialized with Caf-
feNet [16] weights pre-trained on the ImageNet image clas-
sification task [21]. Our fully-connected layers and LSTMs
are randomly initialized using Xavier [9] initialization. The
convolutional layers are frozen during training, while only
the fully connected layers and LSTMs parameters are up-
dated. We use a hidden state size of 128 for the LSTMs
and an ADAM [19] optimizer with a learning rate of 1e-6.
The model is evaluated on the validation set at the end of
each training epoch, the model with the highest accuracy
is saved. We trained all models for 50 epochs or until the
validation accuracy saturates.

6. Results

Metric

We report our accuracy using mean Intersection-over-Union
(mIoU). Given a predicted box Ap and a ground truth box
Ag , IoU =

Ap∩Ag

Ap∪Ag
. This ratio tell us how well a predicted

box is aligned with a ground truth box. mIoU is taken as the
average of all given IOU measurements. For IoU, typically
a value of 0.5 or greater is considered a success. Sample
measures of IoU are shown in Fig 4.
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Table 1: mIoU of the models on the validation set using the following sequence lengths.

Model Train on Length 4 Length 8 Length 16
GoTurn1

1 - 0.8814 0.8821 0.8864

GoTurn2

Length 4 0.7213 0.7082 0.7041
Length 8 0.6014 0.5818 0.5738
Length 16 0.5963 0.5750 0.5651

LSTM-KF1

Length 4 0.8645 0.8657 0.8702
Length 8 0.8712 0.8703 0.8750
Length 16 0.7869 0.8335 0.8578

LSTM-KF2

Length 4 0.7658 0.7582 0.7571
Length 8 0.7432 0.7326 0.7281
Length 16 0.7814 0.7720 0.7701

LSTM-KF3

Length 4 0.8075 0.6917 0.4365
Length 8 0.8416 0.8451 0.8119
Length 16 0.6948 0.7097 0.7361

CNN+LSTM
Length 4 0.8570 0.8574 0.8370
Length 8 0.8675 0.8688 0.8727
Length 16 0.8813 0.8812 0.8842

Figure 4: Visual samples of IoU boxes for the given values
[37]

Quantitative

We calculate mIoU using all frames in the validation set and
display the results in Table 1. All models, except GoTurn1,
were trained on video sequences with lengths 4, 8, and 16
and evaluated at those lengths. For the models trained us-
ing our regime, CNN+LSTM outputs the highest mIoU for
all sequence lengths. However LSTM-KF1 performs higher
on models trained on sequence lengths 4 and 8, while de-
creasing dramatically when trained on 16 length sequences.
GoTurn1 performs highest amongst all the models, but only
slightly better than CNN+LSTM trained on 16 length se-
quences. It is important to note that GoTurn1 used every
frame in the training set, so it trains on approximately 4x as
many video frames. It trains on 17x as many video frames
when compared to models trained on 4 length video se-
quences.

In Table 2 we measure the effect of curriculum learn-
ing on the mIoU scores for longer sequences. The mod-
els in these experiments were only trained from 4 frame
video sequences. While the mIoU scores from Table 1 are
higher when evaluating on 4 frames, we see a significant
improvement here when evaluating on 16 frames. Except

for LSTM-KF1, adding curriculum learning prevents a stark
drop in accuracy.

Qualitative

We show qualitative results in Fig. 5 and Fig. 6. The bound-
ing boxes shown represent the ground truth xt (green),
model output prediction x̂t (white), model belief prediction
xt (red), and observation zt (blue). When visualizing these
outputs we notice that while the final output prediction may
be correct, it seems that xt provides a very small contri-
bution to the Kalman update. It does appear as informa-
tive to be used as a belief prediction because the area of the
bounding box is small, and often times away from the tar-
get. Nonetheless the spatial structure of the bounding boxes
provide some visual evidence of the Kalman update, where
x̂t is somewhere between xt and zt.

7. Analysis

Representing our tracker state using its position coor-
dinates allows us the advantage of using the Kalman up-
date equations directly in an intuitive way. The problem

Table 2: Effect of curriculum learning. These were trained
on 4 frames per video sequence using curriculum learning

Model Length 4 Length 8 Length 16
LSTM-KF1 0.7731 0.7265 0.6864
LSTM-KF2 0.7785 0.7729 0.7744
LSTM-KF3 0.7627 0.6846 0.6031
CNN + LSTM 0.8529 0.8546 0.8579
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Figure 5: These are the visualized results from a video sequence from the validation set. While the intermediate values for
the state estimation based trackers seem uninformative, the final tracking output is reasonable. The colors for the bounding
boxes are xt (green), x̂t (white), xt (red), and zt (blue). (Best viewed in color)

reduces to something akin to a point tracker, and we can
use the Kalman equations to update its position based on
the learned motion dynamics. We use a deep network archi-
tecture and propose a way to learn these motion dynam-
ics in a new tracking framework. From our quantitative
results we’ve shown comparable performance compared to
the GoTurn1 and GoTurn2 baselines, when training on mag-
nitudes of less data. This comes as a direct benefit of using a
recurrent structure to maintain a state representation. How-
ever, the CNN+LSTM model outperforms the other state
estimatation based models that perform a Kalman update.
The qualitative results do not match our expectations of the
LSTM-KF tracking framework. From our experiments, the
motion model doesn’t appear to be learning an appropriate
transition function between states, meanwhile the frame-
work still manages to output the correct localization. This
could be possibly driven by the contribution of zt rather

than xt.

Traditional methods use position, velocity, and (some-
times) acceleration to represent the state. But we have no
reliable way of measuring velocity or acceleration as the
video frames may operate on different frame rates. Even so,
using a 4-dimensional vector to represent our state has its
fair share of disadvantages. The state is “information which
summarizes the first observation in predicting the second
observation” [22]. The qualitative results shows that this
may not contain enough information to adequately predict
the future state, even with the hidden layers of the LSTM.
In problems like image classification, the feature represen-
tation for an image is typically on the order of 1024. Our 4-
dimensional vector removes a lot of the visual spatial infor-
mation from the CNN, in characterizing the pair of frames
just using those coordinate vectors. But scaling up the di-
mensions of this state representation would prove very in-
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Figure 6: These are visualized results for a sequence from the validation set, all models except CNN+LSTM latch onto the
wrong target during tracking. The colors for the bounding boxes are xt (green), x̂t (white), xt (red), and zt (blue). (Best
viewed in color)

efficient given the matrix inverse in the Kalman update. On
the other hand, the CNN+LSTM performs on-par or outper-
forms many of the preceding models without including ma-
trix inverses or additional LSTM units. We can deduce that
for the visual tracking task, updating the state representa-
tion using learned Kalman Filters may not bring significant
gains given its additional cost.

8. Next Steps
We have empirically shown that leveraging temporal in-

formation during training provides a huge improvement in
the performance of visual trackers. Further work can be
done to learn how to abstract the state representation, in
a way that retains more information from the CNN while
finding ways to efficiently approximate a state estimation
update. We can also find ways to train on longer sequences
in a recurrent network architecture and restricting our pre-

processing overhead by using unsupervised methods.
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Appendix

A. State Estimation

Recursive state estimation algorithms are a popular tool
which uses partial measurement data and probability meth-
ods to represent the state of a system that may not be di-
rectly observable. These algorithms provide a belief dis-
tribution over the possible world states [31]. The basis for
many modern recursive state algorithms is the Bayes filter.
For all Bayes filters the belief is represented as the posterior
probability of a state variable conditioned on all available
data: bel(xt) = p(xt|z1:t, u1:t) for a state variable x, mea-
surement z, and control input u (if applicable). The belief is
typically calculated from the prediction, computed before
the measurement update at time t: bel = p(xt|z1:t−1, u1:t).

We will be using a popular implementation of the Bayes
filter, the Kalman filter. The Kalman filter is part of the
Gaussian filter family, which represents the beliefs of a sys-
tem using a multivariate normal distribution. The state tran-
sition probability, p(xt|ut, xt−1), used to produce the pre-
diction from prior belief, is defined as:

xt = Atxt−1 +Btut + εt εt ∼ N (0, Q) (5)

and similarly the measurement probability, p(zt|xt), update
is:

zt = Htxt + δt δt ∼ N (0, R) (6)

The Kalman filter operates under linear Gaussian as-
sumptions, meaning the state transition probabilities and
the measurement probabilities must be linear functions. At,
Bt, and Ht are matrices used to transition from the cur-
rent state onto the next. In following equations we remove
ut as we do not have a control input in our experiments.
The variables εt and δt are added Gaussian noise, with Q
and R as their respective covariances. Denoting our state as
xt ∼ N (µt,Σt), the Kalman filter algorithm is shown as:

µt = Atµt−1 (7)

Σt = AtΣt−1A
>
t +Qt (8)

where µt and Σt represent the belief predictions. The
Kalman gain, Kt, along with the measurement update is
defined as:

Kt = ΣtH
>
t (HtΣtH

>
t +Rt)

−1 (9)
µt = µt +Kt(zt −Htµt) (10)

Σt = (I −KtHt)Σt (11)

Because of the linear Gaussian assumption, the standard
Kalman filter cannot be used in many applications. How-
ever the Extended Kalman Filter (EKF) relaxes these as-
sumptions allowing both the state transition and measure-
ment probability to be non-linear, and linearizing them us-
ing a Taylor series expansion for the prediction update.
Equations 7 and 8 now become:

µt = g(µt−1) (12)

Σt = GtΣt−1G
>
t +Qt (13)

where g is a non-linear function andGt is its first deriva-
tive i.e the Jacobian matrix. The remaining Kalman update
equations follow similarly, withHt now representing the Ja-
cobian of the non-linear measurement update h. Equation
10 changes to:

µt = µ +Kt(zt − h(µt)) (14)

Using these non-linear functions, our implementation
most resembles the EKF. We compute the measurement up-
date from our CNN, a non-linear function approximator,
Equation 6 can be appropriately written as zt = hθ(xt).
Additionally, we use an LSTM to perform our non-linear
prediction update step.
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B. Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a type of artifi-

cial neural network that uses internal memory to process a
sequence of inputs. This allows these networks to operate
on sequential data: speech recognition, time series predic-
tion, videos, etc. Traditional RNNs, however, suffer from
vanishing or exploding gradients and have limited long-
term dependencies. Long Short-Term Memory networks
(LSTMs) [15] were introduced as a class of RNNs with a
gated architecture that overcomes some of these problems.
Instead of processing all sequence information, the network
learns to control the flow of data between time steps. With
the use of gates, the LSTM can learn to forget its current
cell state and control how much data to input or output.

LSTM equations, � represents element-wise multiplica-
tion:

it = σ
(
W i
xxt +W i

hht−1 + bi
)

(15)

ft = σ
(
W f
x xt +W f

hht−1 + bf
)

(16)

ot = σ (W o
xxt +W o

hht−1 + bo) (17)
c̃t = tanh (W c

xxt +W c
hht−1 + bc) (18)

ct = ft � ct−1 + it � c̃t (19)
ht = ot � tanh (ct) (20)

The input gate (15) controls the extent to which the input
values are read into the LSTM cell, while the intermediate
cell state (18) limits how much information is written into
the cell. The forget gate (16) controls the values that remain
from the previous cell state. it, c̃t, and ft are used along
with the previous cell state ct−1 to produce the current cell
state (19). The hidden state (20) is output from ct and the
output gate (17), which limits the values used from the non-
linear activation. The last hidden state, ht, is typically used
as the output of the LSTM.
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Table 3: mIoU of the models on the validation set trained on 16 length sequence lengths.

# frames trained on Model Length 4 Length 8 Length 16

Baselines
1.86× 106 GoTurn1 0.8814 0.8821 0.8864
4.22× 105 GoTurn2 0.5963 0.5750 0.5651
4.22× 105 LSTM-KF1 0.7869 0.8335 0.8578

Ours
4.22× 105 LSTM-KF2 0.7814 0.7720 0.7701
4.22× 105 LSTM-KF3 0.6948 0.7097 0.7361
4.22× 105 CNN+LSTM 0.8813 0.8812 0.8842

Table 4: Effect of curriculum learning, models trained on 4 frames sequence lengths

# frames trained on Model Length 4 Length 8 Length 16
Baseline 1.05× 105 LSTM-KF1 0.7731 0.7265 0.6864

Ours
1.05× 105 LSTM-KF2 0.7785 0.7729 0.7744
1.05× 105 LSTM-KF3 0.7627 0.6846 0.6031
1.05× 105 CNN + LSTM 0.8529 0.8546 0.8579

Table 5: Without curriculum learning, models trained on 4 frames sequence lengths

# frames trained on Model Length 4 Length 8 Length 16
Baseline 1.05× 105 LSTM-KF1 0.8645 0.8657 0.8702

Ours
1.05× 105 LSTM-KF2 0.7658 0.7582 0.7571
1.05× 105 LSTM-KF3 0.8075 0.6917 0.4365
1.05× 105 CNN + LSTM 0.8570 0.8574 0.8370
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